SEEKING TO MAKE YOUTH SPORTS SAFE

BY P. DAVID HALSTEAD

Protective equipment, standards, and common sense are keys to preventing serious injury.

ORGANIZED youth sports in the U.S. and most of North America are relatively safe endeavors in which the benefits far outweigh the risks. On the individual level, even less-organized sports have enormous physical and emotional benefits that, in all but the most extreme cases, weigh in favor of the activity. That is not to say that life-altering catastrophic events never occur. Although rare, terrible sports-related tragedies do happen. Most are preventable by making a concerted effort on many fronts. Of the preventive measures available, proper training, coaching, supervision, and quick medical care are almost always the key steps to be taken. It is the role of protective sports equipment, those who build it, and the organizations that create the methods to judge their potential effectiveness to be the final defense in minimizing the occurrence of tragic events. Even under the best circumstances, there are times when nothing can prevent heartbreaking injuries or even death.

Standards in North America usually can be described as falling into one of several categories. Government (such as those mandated by the Consumer Products Safety Commission) and voluntary or industry standards are the most common. Of voluntary standards, the ones that are managed by a particular governing body seem to be the most effective. As an example, if a piece of personal protective equipment is required for some type of play, like a football Equipment Certification Council (HECC) certified helmet by USA Hockey (the national governing body), it is a good bet players will wear such equipment because the rules prohibit participation without doing so.

Governing bodies, however, rarely write or create such standards because that is not in their area of expertise. Rather, they will rely upon other organizations, such as the American Society for Testing and Materials (ASTM), which has over 30,000 members and is well-respected for its consensus standards, to arrive at a viable and effective one.

Others, such as the National Operating Committee on Standards for Athletic Equipment (NOCSAE), operate using a smaller format. This more-limited group is capable of setting standards much more quickly than the consensus approach allows. It could be argued that this second approach involves less input from concerned parties, but a "public" review period prior to actual implementation eliminates most of this criticism. On the plus side, these smaller groups can sometimes act in the best interest of the athlete with less political maneuvering from outside groups that may fear the effects of any change in a standard. Both approaches can and do work very well.

Some of the most effective systems use yet another layer to implement standards. HECC, for instance, does not set standards, but instead will adopt for use those set by, say, ASTM. HECC then will oversee the certification process that must be successfully completed in order to earn the mark of the Council. In these cases, the governing bodies will require that the products be marked as such by HECC before they can be used for competitive play. For example, USA Hockey requires that helmets and face shields be certified by HECC in order for them to be worn for play in a league under its oversight and/or control.

The act of setting standards is complex and can be difficult. The process involves the cooperation of many, but is rewarding when a standard that may save a life or prevent a catastrophic injury is implemented. Almost anyone can participate in this process. If you have an interest in doing so, simply contact the certifying or governing body for this activity and pitch in. Even if you have no technical know-how, but simply love and understand the sport, your input will be welcome.

Protective equipment can range from a simple batting glove to a sophisticated head-
ay be what has come to be called "shaken baby syndrome," which may result from shaking or rapidity of head—either side to side or up and down, or nearly any combination of the two. The causes of these injuries, whether in a baby or an adult, are so far not understood as well. Threshold injury values for linear acceleration are estimated with some degree of scientific certainty, but rotational injury is less well-documented. Work in that area is progressing, and a better understanding of threshold limit values might be forthcoming during the next several years.

In the typical serious head trauma, it is likely that both these injury mechanisms are present. From the protective equipment standpoint, this is a potential quandary. In the rotational type of injury, a helmet may be expected to be little or no value. In fact, having the added mass of a helmet on your head may be a bad thing, depending on a variety of factors. For example, in a violent rotation like shaken baby syndrome, where there is no risk of head impact, but the head motion is very violent and variable in force and direction, the mass of the helmet on the head would tend only to increase the momentum and thus the damage to the brain. This, of course, assumes that the mass of the helmet is not sufficient to prevent the motion from being initiated in the first place. In the case of football, say, not having the helmet represents such a known and obvious risk from linear acceleration injury that you must wear one. Since a helmet is that there where you need it and not when you don't—a force field, so to speak—has not yet been designed, an understanding of the mechanics involved and the resultant tradeoffs that have to be made is required.

One such example is the "softer" baseball. It is true that softer baseballs that meet the NOCSAE standard reduce the risk of trauma you should be struck by your unprotected head by one at a high speed. Using this type of ball, however, may not affect the risk of a sudden stopping of the neck due to an impact to the torso. If it is even possible that, in some scenarios, a softer ball may be more likely to trigger this rare cardiac response than a harder ball would. Good research is being done in this area and seems to show that both ball speed and stiffness are relevant as causes for such an occurrence. For arguments sake, let us assume that, in some cases, the ball hitting the unprotected player's chest and causing a bruise or even a bone break may not be the type of impact that results in the cardiac cycle becoming upset. If so, we must assume that using a vest or softer rule of thumb, high-quality protective equipment independently certified for the activity your child is participating in is the best choice.

There is no substitute for common sense. It is the most important tool to prevent sports-related injury. Examples are everywhere. Good coaching and learning the fundamentals of the game are vital no matter what the sport. One example of the lack of common sense falls in the hands of those who believe but true category. Some youth league baseballs—which are not specifically marketed as "soft " or a reduced injury ball—may not be harder in compression measurements than major league balls are. When asked why this is the case, manufacturers have pointed out that the life expectancy of a major league ball is just a few pitches, but a ball at the youth level is expected to last several games. In order to improve durability and shape over the longer expected life, manufacturers have used more durable materials or manufacturing processes that can lead to a much stiffer ball. Recently promulgated standards at the youth league level to limit ball stiffness would eliminate this concern.

Since the knowledge of the effects caused by repetitive injury has been well-documented, I am always amazed when I get a call along the lines of "My son has had several concussions playing football. What brand of helmet should I get for him?" My answer is, "A good golf hat to go with his clubs so he can stop playing football. The risk of reinjury, with permanent and potentially catastrophic effects, is very high in a player who has experienced this number of head injuries." The risk of reinjury and the cumulative effects of brain injury on athletes in all contact/collision sports are well-known, but, even so, individuals continue to play hurt beyond all reason.

Common sense, good coaching, good officiating, some old-fashioned fitness habits (including proper hydration), and skill in the fundamentals remain the best injury prevention tools we have. For instance, in baseball, at least in my opinion, the best piece of protective equipment a fielder has is a glove and knowing how to use it. It must be remembered, though, that even with good coaching, top-notch equipment and best efforts on the part of all, injuries can and will occur. The object is to prevent them wherever possible and minimize their impact should they occur.

P. David Halstead is technical director of the Sports Biomechanics Impact Research Lab, Engineering Institute for Injury and Trauma Prevention, University of Tennessee, Knoxville.

The National Operating Committee on Standards for Athletic Equipment runs a Drop System test to determine results of impact on the human brain when someone's head is brought to an abrupt stop by collisions at various speeds.